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Abstract The phenomenon of Spin-Charge separation in non-Fermi liquids is well un-
derstood only in certain solvable d = 1 fermionic systems. In this paper we furnish the
first example of asymptotic Spin-Charge separation in a d = 1 nonsolvable model. This
goal is achieved using Renormalization Group approach combined with Ward-Identities and
Schwinger-Dyson equations, corrected by the presence of a bandwidth cut-offs. Such meth-
ods, contrary to bosonization, could be in principle applied also to lattice or higher dimen-
sional systems.

Keywords Renormalization group · Fermionic systems · Ward identities ·
Schwinger-Dyson equation · Spin-charge separation

1 Introduction and Main Results

In recent years the properties of non-Fermi liquids have been extensively investigated, both
from experimental and theoretical point of view. In particular, one of the most spectacular
feature appearing in non-Fermi liquids is the phenomenon of Spin-Charge (SC) separation,
which is surely relevant for the physics of metals so anisotropic to be considered one di-
mensional, see for instance [17] or [11]. In addition, it is the key property in the Anderson
theory of high-Tc superconductors (cuprates described by d = 2 fermionic systems), [1].

As it is well known, SC separation is an highly non-perturbative phenomenon, and its
occurrence in fermionic models is quite hard to prove. Up to now it has been obtained only
for the spinning Luttinger model (or Mattis model), [16], describing two kind of fermions,
with spin 1/2 and interacting through a short ranged potential. Its exact solvability is due
to the linear dispersion relation (without any form of high energy cutoff) requiring a “Dirac
sea” of fermions with negative energy; such features are quite unrealistic in a model aiming
to describe conduction electrons in a metal, but they allow to map the interacting fermionic
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system into a non-interacting bosonic one, and to write the Hamiltonian as sum of two,
decoupled Hamiltonians, respectively for spin and the charge degree of freedom. As a result,
the two-point Schwinger function, in the case of local interaction, factorizes into the product
of two functions, with different Fermi velocities, sρ, sσ , and different critical indices ηρ, ησ ,
for the density (ρ) and the spin (σ ) respectively:

Sω(x0, x1) = 1

(x0sσ + iωx1)1/2+ησ

1

(x0sρ + iωx1)
1/2+ηρ

. (1)

Such a factorization appears also in the n-point Schwinger functions (see [14] for an ex-
plicit formula), and it causes a phenomenology considerably different from the one of Fermi
liquids [18].

For certain values of the parameters the spinning Luttinger model reduces to the Chiral
Luttinger model; in such a case (1) still hold but ηρ = ησ = 0, that is in such a model only
SC separation and no anomalous dimension is present.

The occurrence of SC separation in more realistic non solvable models, like the Hub-
bard model, has never been established, as a consequence of the fact that lattice or nonlinear
bands prevents the use of bosonization. It is important to understand SC separation in the
framework of Renormalization Group (RG), which is actually the only method which can
be in principle applied in full generality to the complex models appearing in condensed mat-
ter in any dimension. However even in d = 1, in which RG methods have been extensively
applied,—from the fundamental perturbative analysis in [17] to the non-perturbative and
rigorous construction of Luttinger liquids in [2–4, 6, 15]—very few attention has been de-
voted to the application to SC separation effects (with the exception of the recent paper [9],
in which however several approximations are introduced).

In this paper we will show that SC separation can be established in a non exactly solvable
model by using RG methods; the model we consider is the Chiral Luttinger liquid model
with a bandwidth cut-off, describing spinning fermions interacting through a short range po-
tential. For physical applications, the presence of a finite momentum cut-off is essential as
a linear dispersion relation can be a reasonable approximation for a non-relativistic disper-
sion relation only for momenta close to the Fermi surface; its presence prevents however the
possibility of an exact solution through bosonization. This model have received a great deal
of attention since the edge excitations in the fractional Quantum Hall effect are believed to
be a physical realization of a Chiral Luttinger liquid [19].

1.1 Basic Definitions

We express the Chiral Luttinger liquid model directly in terms of Grassmann variables.
Given the interval [0,L], the inverse temperature β and a large integer, M , we introduce the
lattice �M made of the points x = (x0, x1) = (n0

β

M
,n1

L
M

), for n0, n1 = 0,1, . . .M − 1. We
also consider the lattice D = DL × Dβ of points k = (k0, k1), with k0 = 2π

β
(n0 + 1

2 ), k1 =
2π
L

(n1 + 1
2 ), and n0, n1 = 0,1, . . . ,M − 1. With each k ∈ D, we associate eight Grassmann

variables, ψ̂
(≤N)ε

k,ω,σ , for ε,ω,σ = ±: the label σ represents the spin of the field, and the index
ω its chirality (‘right’ or ‘left’ moving particle). The Grassmann measure P (dψ(≤N)) is
defined in terms of the propagator, i.e. the covariance of the fields: 〈ψ−ε(≤N)

x,ω,σ ψ
ε′(≤N)

y,ω′,σ ′ 〉0 =
εδε,ε′δω,ω′δσ,σ ′g(≤N)

ω (x − y) for

g(≤N)
ω (x − y)

def= 1

βL

∑

k∈D
eik(x−y) χ̂N (k)

−ik0 + ωk1
(2)
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where χ̂N (k) is a smooth compact support function χ̂N (k)
def= χ̂(γ −N |k|), where γ > 1 and

χ̂ (t) is a C∞
0 (R+) such that

χ̂ (t)
def=

{
1 if 0 ≤ t ≤ 1,

0 if t ≥ γ.
(3)

For evaluating the Schwinger functions it is convenient to consider the Generating Func-
tional, W(ϕ, J ), defined in terms of the external sources J,ϕ and ϕ̄ by the following Grass-
mann integral

eW(ϕ,J ) def=
∫

P (dψ(≤N)) exp

{
λV (ψ(≤N)) +

∑

ω,σ

∫
dx Jx,ω,σ ψ+(≤N)

x,ω,σ ψ−(≤N)
x,ω,σ

}

× exp

{∑

ω,σ

∫
dx[ϕ+

x,ω,σ ψ−(≤N)
x,ω,σ + ψ+(≤N)

x,ω,σ ϕ−
x,ω,σ ]

}
(4)

where
∫

dx
def= βL

M2

∑
x0,x1∈�M

and, for v(x) a smooth, rotation invariant, short range potential
with v̂(0) = 1,

V (ψ) =
∑

ω,σ

∫
dxdyψ+

x,ω,σ ψ−
x,ω,σ v(x − y)ψ+

y,ω,−σ ψ−
y,ω,−σ . (5)

The propagator (2) describes fermions with a linear dispersion relation and a momentum
cut-off selecting momenta |k| ≤ γ N+1, and V (ψ) corresponds to a short range interaction
involving only fermions with the same chirality.

The fields Jx,ω,σ are commuting variables, while the fields ϕx,ω,σ , ϕ̄x,ω,σ are anticommut-
ing. By taking 2n derivatives of W(ϕ, J ) with respect to the ϕ, ϕ̄ fields and m with respect
the J field, and then putting J = ϕ = ϕ̄ = 0, one obtains the Schwinger functions at temper-
ature β−1, corresponding to 2n fermionic fields with m density insertions. As well known,
the physical properties of the model can be deduced from the Schwinger functions, and an
important role is played by the two-point Schwinger function, which is defined as

SN;ω,σ (x − y) = ∂2WN

∂ϕ+
x,ω,σ ∂ϕ−

y,ω,σ

(0,0). (6)

The lattice �M is introduced just for technical reasons in order to avoid an infinite number
of Grassmann variables, but our results are trivially uniform in M . The size L and the inverse
temperature β plays the role of infrared cut-offs; one is interested in the physical quantities
in the thermodynamic limit L → ∞ and at low temperatures, that is up to β = ∞. We will
prove the following result.

Theorem 1 There exists ε0 > 0 (N independent) such that, for |λ| ≤ ε0, the limit of the
two-points Schwinger function for M,β,L → ∞ exists and has the form, for x 
= 0

SN;ω,σ (x) = 1

(x0s + iωx1)1/2(x0s−1 + iωx1)1/2
[1 + RN(x)] (7)

with RN(x) bounded and such that

lim
|x|→∞

RN(x) = 0 and s = 1 + λ

2π
. (8)
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The above theorem provides the first example of SC separation in a non solvable model.
It is only asymptotic, that is up to terms which are negligible for large distances.

The proof of (7) is based on Renormalization Group methods combined with Ward Iden-
tities and Schwinger-Dyson equations, corrected by terms due to the presence of the mo-
mentum cut-offs which breaks the local symmetries. Hopefully the methods presented here
could be applied to prove spin-charge separation in the d = 1 or even the d = 2 Hubbard
model, despite such problems are of course much harder and pose several extra technical
problems.

The rest of the paper is organized in the following way. In Sect. 2 and Sect. 3 we per-
form a Renormalization Group analysis; in the integration of the ultraviolet scales one has
to improve the naive dimensional bounds taking advantage from the non-locality of the in-
teraction, while in the infrared scales dramatic cancellations due to global phase symmetries
are exploited. In Sect. 4 we bound the difference of the Schwinger functions with and with-
out cut-offs, showing that it has a faster power law decay. Finally in Sect. 5 we implement
Ward Identities and Schwinger-Dyson equations in the RG approach, obtaining an explicit
expression of the Schwinger functions in the limit of removed cutoff.

2 Renormalization Group Analysis

We define the effective potential on scale N

V (N)(ψ(≤N), ϕ, J )
def= λV (ψ(≤N)) +

∑

ω,σ

∫
dxJx,ω,σ ψ+(≤N)

x,ω,σ ψ−(≤N)
x,ω,σ

+
∑

ω,σ

∫
dx[ϕ+

x,ω,σ ψ−(≤N)
x,ω,σ + ψ+(≤N)

x,ω,σ ϕ−
x,ω,σ ]. (9)

Let f̂h(k)
def= χ̂ (γ −h|k|)− χ̂ (γ −(h−1)|k|). The RG analysis is triggered by the decomposition

of χ̂N (k) as
∑N

h=−∞ f̂h(k), and correspondingly, the decomposition of the propagator, (2),
as

g(≤N)
ω (x) =

N∑

h=−∞
g(h)

ω (x) for g(h)
ω (x) = 1

βL

∑

k∈D
eikx f̂h(k)

−ik0 + ωk1
. (10)

Using standard techniques (see for instance [12], Appendix A2), for any positive integer q ,
there exists a constant Cq such that, for any h ≤ N

|g(h)
ω (x)| ≤ Cq

γ h

1 + (γ h|x|)q
. (11)

From the basic properties of Grassman integrals it also follows that ψε(≤N)
x,ω,σ = ∑N

j=−∞ ψ
ε(j)
x,ω,σ ,

where ψ
ε(j)
x,ω,σ is randomly independent from ψε(i)

x,ω,σ , for i 
= j ; and has covariance g(j)
ω (x).

We then define the effective potential on scale k, V (k)(ψ(≤k), ϕ, J ), such that

eV
(k)(ψ(≤k),ϕ,J ) def=

∫
P (dψ [k+1,N])eV

(N)(ψ [k+1,N]+ψ(≤k),ϕ,J )

= e
∑∞

n=1
1
n!ET

k+1,N
(V(N);n) (12)
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for ψε[k,N]
x,ω,σ = ∑N

j=k ψ
ε(j)
x,ω,σ and ψε(≤k)

x,ω,σ = ∑N

j=−∞ ψ
ε(j)
x,ω,σ ; ET

k,N is the truncated expectation
with respect to the propagator g[k,N]

ω (x):

ET
k+1,N (V (N);n)

def= ET
k+1,N [V (N)| · · · |V (N)

︸ ︷︷ ︸
n times

].

The effective potential is a polynomial of the fields. For ϕ = 0, (the case ϕ 
= 0 will be
discussed in Sect. 4) we define the kernels on scale k, W(n;2m)(k)

ω,σ , such that, for z = z1, . . . , zn,
x = x1, . . . ,xm, y = y1, . . . ,ym and σ = σ ′

1, . . . σ
′
n, σ1, . . . σm, we have

V (k)(ψ(≤k),0, J ) =
∑

n≥0
m≥0

∑

σ ′,σ
ω

∫
dzdxdy

W(n;2m)(k)
ω,σ (z;x,y)

n!(2m)!

×
n∏

j=1

Jzi ,ω,σ ′
i

m∏

i=1

ψ+(≤k)
xi ,ω,σi

ψ−(≤k)
yi ,ω,σi

. (13)

As consequence of (12), the expression of the kernels in terms of the truncated expectations
is:

W(n;2m)(k)
ω,σ (z;x,y)

=
n∏

i=1

∂

∂Jzi ,ω,σ ′
i

∣∣∣∣
J=0

m∏

i=1

∂

∂ψ
+(≤k)
xi ,ω,σi

∂

∂ψ
−(≤k)
yi ,ω,σi

∣∣∣∣
ψ(≤k)=0

×
∞∑

p=1

1

p!E
T
k+1,N (V (N)(ψ(≤k) + ψ [k+1,N], J );p). (14)

We introduce the following norm

‖W(n;2m)(k)
ω,σ ‖k

def= 1

Lβ

∫
dxdydx′dy′dz|χ

k
(x′ − x)χ

k
(y′ − y)W(n;2m)(k)

ω,σ (z;x,y)| (15)

where χ
k
(x) = ∏n

j=1 χk(xj ) and χk(x) is the Fourier transform of
∑

j≤k f̂j (k).
We give more details on the truncated expectation of monomials of the fields; then, any

polynomial can be computed by multilinearity. To shorten the notations we call

ψP =
∏

f ∈P

ψ−
x(f ),ω,σ (f )ψ

+
y(f ),ω,σ (f ) (16)

where P is a set of labels. Given the clusters of points P1, . . . ,Ps , the truncated expectation
ET

k+1,N [ψP1 | · · · |ψPs ] is given by the sum of the values (with the relative sign) of all possible
connected Feynman graphs, obtained representing graphically the monomial ψP as a set of
oriented half lines coming out from the clusters of points and contracting them in all possible
ways so that all the clusters are connected; to each line is associated a propagator g[k+1,N]

ω .
Then the kernels W(n;2m)(k)

ω,σ can be written as sum over Feynman graphs as well, and the
presence of cutoffs make each of them finite. Each connected Feynman graph made of p

vertices is bounded by Cp|λ|p/p!; anyway their number is O(p!2) so that the sum of the
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Fig. 1 An example of Feynman
graph corresponding to one
possible contribution to the
truncated expectation of the
clusters P1, . . . ,P4. The lines
with the arrows are the
propagator: not all of them are
necessary to connect the four
clusters

graphs giving the truncated expectations are bounded by Cp|λ|pp!, from which convergence
of the series expansion in λ does not follow. The combinatorial bound can be improved using
the idea in [7]: the anticommutativity of fermions produces dramatic cancellations among
Feynman graphs, which are lost if the sum of graphs is simply bounded by the sum of their
absolute values.

In order to exploit such cancellations it is then convenient to use a different representation
of the truncated expectations: here we follow the standard technique of [10] and [8] (see
also [13] and, for a detailed derivation, [12]).

ET
k+1,N [ψP1 | · · · |ψPs ]

=
∑

T

∏

l∈T

g[k+1,N]
ω (xl − yl )

∫
dPT (t)detGT

k+1,N (t) (17)

where:

(1) T is a set of lines forming a tree between the clusters of points P1, . . . ,Ps , i.e. T is
a set of lines which becomes a tree if all the points in the same cluster are identified;

n
def= ∑s

j=1 |Pj |;
(2) t = {ti,i′ ∈ [0,1],1 ≤ i, i ′ ≤ s} and dPT (t) is a probability measure with support on a set

of t such that ti,i′ = ui · ui′ for some family of vectors ui ∈ R
s of unit norm;

(3) GT
k+1,N (t) is a (n − s + 1) × (n − s + 1) matrix, whose elements are given by

[GT
k+1,N (t)](j,i),(j ′,i′) = tj,j ′g[k+1,N]

ω (xj,i − xj ′,i′) (18)

where 1 ≤ j, j ′ ≤ s and 1 ≤ i ≤ |Pj |, 1 ≤ i ′ ≤ |Pj ′ |, such that the lines l = xj,i − xj ′,i′
do not belong to T .

The kernels W(n;2m)(k)
ω,σ can be written as a convergent series in λ, as it is shown by the

following lemma.

Lemma 1 There exists εk,N such that, for any λ such that |λ| ≤ εk,N , W(n;2m)(k) are analytic
in λ.
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Fig. 2 Graphical representation
of one term in (17). A tree graph
connects the four clusters. The
determinant correspond to
contract the remaining half lines
each other in all possible ways

Proof We bound the determinant GT
k+1,N (t) in (17) by using the Gram-Hadamard inequal-

ity: if Ai , Bj are vectors in a Hilbert space with scalar product 〈·, ·〉, then

|det
i,j

〈Ai,Bj 〉| ≤
∏

i

√〈Ai,Ai〉
√〈Bi,Bi〉. (19)

Let H = R
s ⊗H0, where H0 is the Hilbert space of complex, squared summable functions,

with scalar product

〈F,G〉 =
4∑

i=1

1

Lβ

∑

k

F̂ ∗
i (k)Ĝi(k). (20)

Since GT
k+1,N (t) in (17) can be written as

GT
ij,i′j ′(t) = ti,i′g

[h+1,N]
ω (xij − yi′j ′)

= 〈ui ⊗ Axij ,ω,ui′ ⊗ Bxi′j ′ ,ω〉 (21)

where ui ∈ R
s , i = 1, . . . , s, are the vectors such that ti,i′ = ui · ui′ , and

Ax,ω = 1

Lβ

∑

k

eikx

√
χ̂k,N (k)

k2
0 + k2

,

Bx,ω = − 1

Lβ

∑

k

eikx
√

χ̂k,N (k)(ik0 + ωk)

(22)

so that

〈A,A〉 1
2 ≤ Cγ N−2k, 〈B,B〉 1

2 ≤ Cγ 2N, (23)

we get

|detGT
k+1,N (t)| ≤ C(

∑s
i=1 |Pi |/2−s+1)Nγ (

∑s
i=1 |Pi |/2−s+1)(N−k). (24)

The number of trees T in (17) is bounded by C
∑

i |Pi |s!, for a suitable constant C; by us-
ing (14) and (17), bounding the determinants by (11) and the integrations over coordinates
by

∫
dx|g[h,N]

ω (x)| ≤ Cγ −h,

∫
dx|v(x)| ≤ C (25)
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we get

‖W(n,2m)(k)
ω,σ ‖k ≤

∞∑

p=1

|λ|pCpγ −p3(N−k)γ m(p−3N)γ −nkγ 3N+k (26)

and convergence follows for λ small enough. �

The above lemma says that the kernels W(n,2m)(k)
ω,σ are analytic in λ with an estimated

radius of convergence which shrinks to zero when |N − k| → ∞; we will see in the rest
of this section how to improve the above bound to get convergence uniformly in N − k, by
exploiting suitable cancellations in the series expansion.

It is convenient to introduce the directional derivative

∂ω = 1

2

(
i

∂

∂k0
+ ω

∂

∂k

)
.

We will skip, sometimes, the label ω in the kernels. Calling Ŵ (n;2m)(k)
ω,σ (p;k,q) the Fourier

transform of W(n;2m)(k)
ω,σ (z;x,y), we have the following lemma.

Lemma 2 For |λ| small enough,

Ŵ (0;4)(k)
σ (0) = λδσ,−σ ′ , Ŵ (1;2)(k)

σ (0) = δσ,σ ′ ,

Ŵ (0;2)(k)
ω,σ (0) = (∂ωŴ (0;2)(k)

ω,σ )(0) = (∂−ωŴ (0;2)(k)
ω,σ )(0) = 0.

(27)

Proof Because of Lemma 1, we can write the kernels as a convergent power series in λ:
Ŵ (n;2m)(k)

ω,σ (p;k,q) = ∑
p≥0 λpŴ

(n;2m)(k)

p;ω,σ (p;k,q). For any integer p ≥ 1, we define Rpk as
the rotation of k of an angle π

2p
:

(
(Rpk)0

(Rpk)1

)
=

(
cos( π

2p
) − sin( π

2p
)

sin( π
2p

) cos( π
2p

)

)(
k0

k1

)
(28)

so that, by the explicit expression of ĝ[k,N]
ω , and since v̂ was defined invariant under rotations,

ĝ[k,N]
ω (Rpk) = e

−iω π
2p ĝ[k,N]

ω (k), v̂(Rpk) = v̂(k). (29)

Since Ŵ
(0;4)(k)

p;σ (k) is expressed by a sum over connected Feynman graphs obtained contract-
ing 4p − 4 field (for such a kernel p ≥ 1), we have

Ŵ
(0;4)(k)

p;σ (Rpk) = e
−iωπ(1− 1

p )
Ŵ

(0;4)(k)

p;σ (k), (30)

which implies Ŵ
(0;4)(k)

p;σ (0) = 0 for any p ≥ 2; while, for p = 1, Ŵ
(0;4)(k)

p;σ (0) equals the cou-

pling, λδσ,−σ ′ . In the same way Ŵ
(1;2)(k)

p;σ (k) is sum over Feynman graphs obtained contract-
ing 4p fields (for p ≥ 0); then

Ŵ
(1;2)(k)

p;σ (Rpk) = e−iωπŴ
(1;2)(k)

p;σ (k) (31)
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and Ŵ
(1;2)(k)

p;σ (0) = 0 for p ≥ 1; while for p = 0 Ŵ
(1;2)(k)

0;σ (0) = δσ,σ ′ . We also find

Ŵ
(0;2)(k)

p;σ (Rpk) = e
−iωπ(1− 1

2p
)
Ŵ

(0;2)(k)

p;σ (k),

(∂ωŴ
(0;2)(k)

p;ω,σ )(Rpk) = e−iωπ (∂ωŴ
(0;2)(k)

p;ω,σ )(k),

(∂−ωŴ
(0;2)(k)

p;ω,σ )(Rpk) = e
−iωπ(1− 1

p )
(∂−ωŴ

(0;2)(k)

p;ω,σ )(k).

(32)

Since p ≥ 1, and Ŵ
(0;2)(k)

1;ω,σ (k) ≡ 0 by explicit computation, (27) is proved. �

We start now the multiscale integration. Using (12), we find

eWN (0,J ) =
∫

P (dψ(≤N−1))

∫
P (dψ(N))eV

(N)(ψ(≤N),0,J )

=
∫

P (dψ(≤N−1))eV
(N−1)(ψ(≤N−1),J ) (33)

where V (N−1)(ψ(≤N−1),0, J ) has the same form of (13). We introduce an L-operation de-
fined on the kernels in the following way

LŴ (n;2m)(N−1)
ω,σ (k) = 0 if n + m > 2,

LŴ (n;2m)(N−1)
ω,σ (k) = Ŵ (n;2m)(N−1)

ω,σ (k) if n + m ≤ 2.
(34)

Then we can write

eWN (0,J ) =
∫

P (dψ(≤N−2))

×
∫

P (dψ(N−1))eLV(N−1)(ψ(≤N−1),0,J )+RV(N−1)(ψ(≤N−1),0,J ) (35)

and integrating we arrive to an expression similar to the r.h.s. of (33) with N −1 replaced by
N − 2; and so on for the integration of the ψ(k+1) field. The above definition of L remains
the same until the scale k = 0. For the fields on scales k < 0 we define:

LŴ (0;4)(k)
σ (k)

def= Ŵ (0;4)(k)
σ (0),

LŴ (1;2)(k)
σ (p;k)

def= Ŵ (1;2)(k)
σ (0;0),

LŴ (0;2)(k)
ω,σ (k)

def= Ŵ (0;2)(k)
ω,σ (0) + k∂kŴ

(0;2)(k)
ω,σ (0).

(36)

By Lemma 2, since k∂k = ∑
ω′ Dω′(k)∂ω′ , we have that

LŴ (0;4)(k)
σ (k,p,q) = λδσ,−σ ′ , LŴ (1;2)(k)

σ (p;k) = δσ,σ ′ ,

LŴ (0;2)(k)
ω,σ (k) = 0.

(37)

In performing the bounds, it is necessary to pass to the coordinate representation; for 0 ≤
k ≤ N , we define λk;ω,σ (x), νk;ω,σ (x) and Zk;ω,σ (z;x) such that

LV (k)(ψ,0, J ) =
∑

ω,σ

∫
dxλk;ω,σ (x)ψ+

x1,ω,σ ψ−
x2,ω,σ ψ+

x3,ω,σ ′ψ
−
x4,ω,σ ′
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+
∑

ω,σ

∫
dxγ kνk;ω,σ (x)ψ+

x1,ω,σ ψ−
x2,ω,σ

+
∑

ω,σ

∫
dzdxZk;ω,σ (z;x)Jz,ω,σ ψ+

x1,ω,σ ′ψ
−
x2,ω,σ ′ (38)

while for k < 0

LV (k)(ψ,0, J ) = λ
∑

σ,ω

∫
dxδσ,−σ ′δ3(x)ψ+

x1,ω,σ ψ−
x2,ω,σ ψ+

x3,ω,σ ′ψ
−
x4,ω,σ ′

+
∑

ω,σ

∫
dzdxδσ,σ ′δ2(z,x)Jz,ω,σ ψ+

x1,ω,σ ′ψ
−
x2,ω,σ ′ (39)

where δ3(x)
def= δ(x1 −x2)δ(x2 −x3)δ(x3 −x4) while δ2(z,x)

def= δ(x1 −x2)δ(x2 −z). To have

a uniform notation we will also use the definitions, for k < 0, λk;ω,σ (x)
def= λδσ,−σ ′δ3(x) and

Zk;ω,σ (z;x)
def= δσ,σ ′δ2(z,x).

It is well known, see for instance [2], that V (k)(ψ(≤k),0, J ) can be represented as a sum
over Gallavotti-Nicolò trees (in the following simply called trees) defined in the following
way.

The trees which can be constructed by joining a point r , the root, with an ordered set of
n ≥ 1 points, the endpoints of the tree, so that r is not a branching point. n will be called the
order of the unlabeled tree and the branching points will be called the non trivial vertices.
We associate a label h ≤ N − 1 with the root, r and we introduce a family of vertical lines,
labeled by an integer taking values in [h,N + 1], and we represent any tree τ ∈ Th,n so
that, if v is an endpoint or a non trivial vertex, it is contained in a vertical line with index
hv > h, to be called the scale of v, while the root is on the line with index h. The tree
will intersect the vertical lines in set of points different from the root and the endpoints;
these points will be called trivial vertices. The set of the vertices of τ will be the union
of the endpoints, the trivial vertices and the non trivial vertices. Note that, if v1 and v2 are
two vertices and v1 < v2, then hv1 < hv2 . Moreover, there is only one vertex immediately
following the root, which will be denoted v0 and can not be an endpoint; its scale is h + 1.
There is the constraint, for the end-points of scale hv , that hv = hv′ + 1, if v′ is the first non
trivial vertex immediately preceding v. With each normal endpoint of scale hv we associate
LVhv−1 given by (34) if hv ≥ 0 or (36) if hv < 0.

We introduce a field label f to distinguish the field variables appearing in the terms V
associated with the endpoints. If v is a vertex of the tree τ , Pv is a set of labels which

Fig. 3 A example of the
Gallavotti-Nicolò tree
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distinguish the external fields of v, that is the field variables of type ψ which belong to one
of the endpoints following v and are not yet contracted in the vertex v. We will also call

nψ
v

def= |Pv| the number of such fields ψ , and nJ
v the number of the field variables of type J

which belong to one of the endpoints following v. Finally, if v is not an endpoint, xv is the
family of all space-time points associated with one of the endpoints following v. It is easy
to verify that

V (k)(ψ(≤k),0, J ) + βLEk =
∑

n≥1

∑

τ∈Tk,n

V (k)(τ ) (40)

where, if v0 is the first vertex of τ and τ1, . . . , τs (s = sv0 ) are the subtrees of τ with root v0,
V (k)(τ ) is defined inductively by the relation, k ≤ N − 1

V (k)(τ ) = (−1)s+1

s! ET
k+1[V̄ (k+1)(τ1)| · · · |V̄ (k+1)(τs)] (41)

where V̄ (k+1)(τ ) = RV (k+1)(τ ), for R = 1 − L, if the subtree τi contains more then one
endpoint; if τi contains only one endpoint V̄ (k+1)(τ ) is equal to one of the terms in LVhv−1.

With these definitions, we can rewrite V (k)(τ,ψ(≤k)) as:

V (k)(τ ) =
∑

P∈Pτ

V (k)(τ,P),

V (k)(τ,P) =
∫

dxv0ψ
(≤k)
Pv0

K
(k)

τ,P(xv0)

(42)

where K
(h+1)

τ,P (xv0) is defined inductively by (41).
By Lemma 1 and calling εk = maxω,σ maxk≤h≤N {‖λh;ω,σ ‖k,‖νh;σ ‖k}

‖K(k)

τ,P‖k ≤ (cεk+1)
n−nJ

v0 γ
k(2− |Pv0 |

2 −nJ
v0

)
∏

v not e.p.

γ −(
|Pv |

2 −2+zv+nJ
v ) (43)

where, if hv > 0, zv ≡ 0. If hv ≤ 0, zv = 2 if |Pv| + 2nJ
v = 2; zv = 1 if |Pv| + 2nJ

v = 4,
and zv = 0 otherwise. The proof of (43) is an immediate consequence of the analysis in
Sect. 3 of [2], based on (17) and the Gram-Hadamard inequality. The following lemma is an
immediate consequence of the above bound.

Lemma 3 There exist C > 1 and ε > 0 such that, for εk+1 ≤ ε and maxh≥k+1 ‖Zk,ω,σ ‖k < 2,

‖W(n;2m)(k)
σ ,ω ‖k ≤ Cn+m−1ε(m−1∧0)γ k(2−n−m) (44)

for (m ∧ 0)
def= max{m,0}.

Proof For hv > 0 the definition of R imposes the constraint that there are no v such that
(|Pv|, nJ

v ) = (4,0), (2,0), (2,1); this implies that, for any v,

dv

def= |Pv|
2

− 2 + zv + nJ
v > 0. (45)

In order to sum over τ and P (for more details, see again [2]) we note that the number of
unlabeled trees is ≤ 4n; fixed an unlabeled tree, the number of terms in the sum over the
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various labels of the tree is bounded by Cn, except the sums over the scale labels and the
sets P. Let V (τ) the nontrivial vertices of τ . In order to bound the sums over the scale labels
and P we use the inequality

∏

v not e.p.

γ −(
|Pv |

2 −2+zv+nJ
v ) =

∏

v∈V (τ)

γ −(hv−hv′ )dv

≤
( ∏

v∈V (τ)

γ − 1
40 (hv−hv′ )

) ∏

v∈V (τ)

γ − |Pv |
40 (46)

and the first factor in the r.h.s. allow to bound the sums over the scale labels by Cn, while the
sum over P can be bounded by using the following combinatorial inequality. Let {pv, v ∈ τ }
a set of integers such that pv ≤ ∑sv

i=1 pvi
for all v ∈ τ which are not endpoints; then

∑

P

∏

v∈V (τ)

γ − |Pv |
40 ≤

∏

v∈V (τ)

∑

pv

γ − pv
40 B

(
sv∑

i=1

pv,pv

)
≤ Cn (47)

where B(n,m) is the binomial coefficient. �

3 Power Counting Improvement

The bound (44) is of course not sufficient to prove the boundedness of the kernels W(n;2m)(k)
σ ,ω ,

as we need to prove that ε̄k is small uniformly in k. On the other hand vh = (λh, γ
hνh,Z

(2)
h )

verify the equation, for h ≥ 0

vh−1 = vh + βh(vh, . . . ,vN) (48)

where βh is expressed by a sum of trees such that the first nontrivial vertex has scale h + 1
(from the property LR = 0), and vN = (λδ−σ ′,σ ,0, δσ,σ ′). Iterating the above equation one
finds

λh;ω,σ (x) = W(0;4)(h)
ω,σ (x),

γ hνh;ω,σ (x) = W(0;2)(h)
ω,σ (x), Zh;ω,σ (z;x) = W(1;2)(h)

ω,σ (z;x)
(49)

and there is no reason a priori for which vh should remain close to vN ; this property will be
established by a careful analysis implying an improvement of the previous bounds. We will
prove in fact the following theorem.

Theorem 2 For |λ| small enough, there exist a constant C1 > 1 such that, for 0 ≤ h ≤ N

‖W(0;2)(h)
σ ‖h ≤ C1|λ|γ −h, ‖W(1;2)(h)

σ ′,σ − δ2δσ,σ ′ ‖h ≤ C1|λ|γ −h,

‖W(0;4)(h)

σ,σ ′ − vλδ2δσ,−σ ′ ‖h ≤ C1|λ|γ −h;
(50)

where (with slight abuse of notation) vδ2 ≡ δ(x − y)v(x − u)δ(u − v).

An immediate consequence of the above theorem, together with (36), (37), (44), (49)
is the boundedness of the kernels W(n;2m)(k)

ω,σ for |λ| small enough (and since, for h ≥ 0,
γ −h ≤ 1)

‖W(n;2m)(k)
σ ,ω ‖k ≤ Cn+m−1|C1λ|(m−1∧0)γ k(2−n−m). (51)



Renormalization Group and Asymptotic Spin-Charge Separation 91

Proof The proof is by induction: we assume that (50) holds for h : k + 1 ≤ h ≤ N ; hence
the hypothesis of lemma 3 are satisfied and we can use (44) to prove (50) for h = k.

To shorten the notation, in this proof we call η
def= ψ≤k . By definition of the effective

interaction, V (k), we have

W(n;2m)(k)
ω,σ (z;x,y)

= ∂n+2mV (k)

∂Jz1,σ1 · · · ∂Jzn,σn∂η+
x1,ω1∂η−

y1,ω1∂η+
xm,ωm∂η−

ym,ωm

(0,0,0). (52)

By the explicit expression of the function V (N) we obtain:

∂V (k)

∂η+
x,ω,σ

(η, J,0)

= Jx,ω,σ

∂V (k)

∂ϕ+
x,ω,σ

(η, J,0)

+ λ

∫
dwv(x − w)

[
∂2V (k)

∂Jw,ω,−σ ∂ϕ+
x,σ

+ ∂V (k)

∂Jw,ω,−σ

∂V (k)

∂ϕ+
x,ω,σ

]
(η, J,0). (53)

Moreover the Wick theorem for Gaussian mean values gives
∫

P (dψ [k+1,N])ψ [k+1,N]−
x,ω,σ F (ψ [k+1,N])

=
∫

dug[k+1,N]
ω (x − u)

∫
P (dψ [k+1,N])

∂F

∂ψ+
u,ω,σ

(ψ [k+1,N]) (54)

for F any polynomial in the field. As direct application, we obtain

∂V (k)

∂ϕ+
x,ω,σ

(η, J,ϕ)

= e−V(k)(η,J,ϕ) ∂eV
(k)(η,J,ϕ)

∂ϕ+
x,ω,σ

= e−V(k)(η,J,ϕ)

∫
P (dψ [k+1,N])(ψ [k+1,N]−

x,ω,σ + η−
x,ω,σ )eV

(N)(ψ+η,J,ϕ)

= η−
x,ω +

∫
du g[k+1,N]

ω (x − u)
∂V (k)

∂η+
u,ω,σ

(η, J,ϕ). (55)

Another useful consequence is (since gω(0) = 0):

∂V (k)

∂Jx,ω,σ

(η, J,ϕ)

= η+
x,ω,σ η−

x,ω,σ

+
∫

dug[k+1,N]
ω (x − u)

[
∂V (k)

∂η−
u,ω,σ

η−
x,ω,σ + η+

x,ω,σ

∂V (k)

∂η+
u,ω,σ

]

+
∫

dudu′g[k+1,N]
ω (x − u)g[k+1,N]

ω (x − u′)
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×
[

∂2V (k)

∂η+
u,ω,σ ∂η−

u′,ω,σ

+ ∂V (k)

∂η+
u,ω,σ

∂V (k)

∂η−
u′,ω,σ

]
. (56)

We will use the following straightforward bounds, for c0, c1, c2 > 1:

|g(h)
ω |0 def= sup

x
|g(h)

ω (x)| ≤ c0γ
h,

|g(h)
ω |1 def=

∫
dx|g(h)

ω (x)| ≤ c1γ
−h,

∫
dx|xj ||g(h)

ω (x)| ≤ c2γ
−2h.

(57)

We start the improvement of the dimensional bounds by considering W(0;2)(k)
σ . By sym-

metry we have W
(1;0)(k)
−σ (w) ≡ 0; hence from (53) and (55) we expand the two-points kernel

as in Fig. 4.

W(0;2)(k)
σ (x,y)

= λ

∫
dwdw′v(x − w)g[k+1,N]

ω (x − w′)W(1;2)(k)

−σ ;σ (w;w′,y) (58)

so that, from the bound (44), ‖W(1;2)(k)

−σ ;σ ‖k ≤ C given by (44), and by the second of (57), we
obtain

‖W(0;2)(k)
σ ‖ ≤ |λ| · |v|∞ · ‖W(1;2)(k)

−σ ;σ ‖k ·
N∑

j=k

|g(j)
ω |1

≤ c1

1 − γ −1
C|v|∞|λ|γ −k ≤ 1 − γ −1

4c1
C1|λ|γ −k (59)

which proves the first of (50), since 1−γ −1

c1
< 1 (C1 is chosen so large to have such a factor

because of later usage). Let us consider now W
(1;2)(k)

σ ′;σ , which from (53) can be rewritten as
in Fig. 5

1. The graph (a) in Fig. 5 is given by:

W
(1;2)(k)

(a)σ ′;σ (z;x,y)

def= λ

∫
dwduv(x − w)g[k+1,N]

ω (x − u)W
(2;2)(k)

σ ′,−σ ;σ (z,w;u,y). (60)

From the bound (44), ‖W(2;2)(k)

σ ′,−σ ;σ ‖k ≤ C2γ −k , we obtain

‖W(1;2)(k)

(a);σ ′;σ ‖k ≤ |λ| · |v|∞ · ‖W(2;2)(k)

σ ′,−σ ;σ ‖k ·
N∑

j=k

|g(j)
ω |1 ≤ C1

4
|λ|γ −2k. (61)

Fig. 4 Topological identity for
W(0;2)(k)
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Fig. 5 Topological identity for W(1;2)(k)

2. The graph (d) is given by

W
(1;2)(k)

(d)σ ′;σ (z;x,y)
def= δσ,σ ′δ(x − z)

∫
dug[k+1,N]

ω (x − u)W(0;2)(k)
σ (u,y) (62)

and using (59) we get

‖W(1;2)(k)

(d)σ ′;σ ‖k ≤ δσ,σ ′ · ‖W(0;2)(k)
σ ‖k ·

N∑

j=k

|g(j)
ω |1

≤ ‖W(0;2)(k)
σ ‖k · c1

1 − γ −1
γ −k ≤ C1

4
|λ|γ −2k. (63)

In order to obtain an improved bound also for the graphs (b) and (c) of Fig. 5, we need to
further expand W

(2;0)(k)

σ ′;−σ
. Using (56), we find

W
(2;0)(k)

σ ′,−σ
(z,w)

=
∫

du′dug[k+1,N]
ω (w − u)g[k+1,N]

ω (w − u′)W(1;2)(k)

σ ′;−σ
(z;u′,u) (64)

and then, replacing the expansion for W
(1;2)(k)

σ ′;−σ
(z;u′,u) in the graph (64) we find for (b) what

is depicted in Fig. 6.

3. We now consider (b1) of Fig. 6.

W
(1;2)(k)

(b1)σ ′;σ (z;x,y)

def= λδ(x − y)

∫
dwdu′dz′v(x − w)v(u′ − z′)

×
∫

dudw′g[k+1,N]
ω (w − u)g[k+1,N]

ω (w − u′)g[k+1,N]
ω (u′ − w′)

× W
(2;2)(k)

σ ′,σ ;−σ
(z, z′;w′,u). (65)
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Fig. 6 Graphical representation of graph (b) in Fig. 5

In order to obtain bound uniform in N − k, it is convenient to decompose the three prop-
agators gωgωgω into scales,

∑N

j,i,i′=k g(j)
ω g(i)

ω g(i′)
ω and then, for any realization of j, i, i ′,

to take the | · |1 norm on the two propagator on the higher scales, and the | · |∞ norm on
the propagator with the lowest one. In this way we obtain:

‖W(1;2)(k)

(b1)σ ′;σ ‖ ≤ |λ| · |v|∞ · |v|1 · ‖W(2;2)(k)

σ ′,σ,−σ
‖k

× 3!
N∑

j=k

j∑

i=k

i∑

i′=k

|g(j)
ω |1|g(i)

ω |1|g(i′)
ω |∞ ≤ C1

20
|λ|γ −2k (66)

where, in the last inequality, we have taken |λ| small enough, and we have used that∑N

j=k γ −j (j − k) ≤ C
∑N

j=k γ −j γ (j−k)/2 ≤ C ′γ −k .
4. The expression for (b2) is:

W
(1;2)(k)

(b2)σ ′;σ (z;x,y)

def= λδσ ′,−σ δ(x − y)

∫
dwv(x − w)[g[k+1,N]

−ω (w − z)]2. (67)

For k∗ = (−k0, k), it holds ĝ[k+1,N]
ω (k) = −iωĝ[k+1,N]

ω (k∗) hence

∫
du[g[k+1,N]

−ω (u)]2 = 0. (68)

Since

v(x − w) = v(x − z) +
∑

j=0,1

(zj − wj)

∫ 1

0
dτ (∂jv)(x − z + τ(z − w)) (69)
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Fig. 7 Equivalent expressions
for (b4)

we can write

W
(1;2)(k)

(b2)σ ′;σ (z;x,y)

= λδσ ′,−σ δ(x − y)v(x − z)
∫

dw[g[k+1,N]
−ω (w)]2 + λδσ ′,−σ δ(x − y)

×
∑

j=0,1

∫ 1

0
dτ

∫
dw(∂j v)(x − z + τ(z − w))(zj − wj)g

[k+1,N]
ω (w − z)

and the first addend is vanishing because of (68). Hence, using the third of (57),

‖W(1;2)(k)

(b2)σ ′;σ ‖k

≤ |λ|
∑

j=0,1

∫ 1

0
dτ

∫
dwdx|(∂j v)(x − z − τw)wj [g[k+1,N]

−ω (w)]2|

≤ 4|λ|
∫

dx|(∂j v)(x)|
N∑

i=k

i∑

j=k

|g(j)
−ω|∞

×
∫

dw|wj ||g(i)
ω (w)| ≤ |λ|C1

20
γ −k (70)

5. The expression for (b3) is:

W
(1;2)(k)

(b2)σ ′;σ (z;x,y)

def= λδσ ′,−σ δ(x − y)

∫
dwv(x − w)

× λ

∫
dz′[g[k+1,N]

−ω (w − z′)]2v(u − z′)W(2;0)(k)

σ,σ ′ (z′, z). (71)

The improved bound for (b3) is obtained in the same way as for (b1).

‖W(1;2)(k)

(b3)σ ′;σ ‖k ≤ C1

20
|λ|γ −k. (72)

6. It is convenient to further expand (b4) using the identity (58), which, in the case at hand,
is depicted in Fig. 7.

Thereby, explicit expression for (b4) is

W
(1;2)(k)

(b4)σ ′;σ (z;x,y)

def= δσ ′,−σ λ2
∫

dz′dwv(x − w)gω(w − z)
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×
∫

dw′du′dug[k+1,N]
ω (w − w′)g[k+1,N]

ω (w′ − u)v(w′ − u′)

× W
(1;2)(k)

−σ ;σ (u′;u, z′)g[k+1,N]
ω (z′ − z). (73)

As in the previous cases, it is convenient first to decompose the propagators gω(w −
z)gω(w − w′)gω(w′ − u) into scales,

∑N

j,i,i′=k g(j)
ω g(i)

ω g(i′)
ω and then, for any realization

of j, i, i ′, to bound with | · |1 norm the two propagators on highest scale, and with | · |∞
norm the one on lower scale. Finally, for |λ| small enough, we have:

‖W(1;2)(k)

(b4);ω′;ω‖k ≤ δσ ′,−σ |λ|2 · |v|1 · |v|∞ · ‖W(1;2)(k)

−σ ;σ ‖k · |gω|1

× 3!
N∑

j=k

j∑

i=k

i∑

i′=k

|g(j)
ω |1 |g(i)

ω |1 |g(i′)
ω |∞ ≤ C1

20
|λ|γ −2k. (74)

7. Similar arguments can be used to bound also the graph (b5).

Finally, it is also clear that a bound for (c) of Fig. 5 can be found along the same lines
discussed for (b) of the same figure. We have so proved, therefore

‖W(1;2)(k)

σ ′;σ ‖k ≤ C1

C2
γ −k (75)

where, for later purposes, C1 is chosen large enough so that in (75) C2 = 1 + 2|v|∞(1 +
|g|1 · ‖W(0;2)(k)

σ ‖k). Clearly (75) implies the second of (50).
Finally from (53) we obtain the identity in Fig. 8. Therefore the bound for the sum of the

graphs (a), (b), (d), and (e) is

|λ| · |v|1 · ‖W(1;2)(k)

σ ;σ ′ − δσ,σ ′δ2‖k(1 + |g|1 · ‖W(0;2)(k)
σ ‖k) ≤ C1

2
γ −k. (76)

Indeed, the last inequality follows from the just proved, improved bound ‖W(1;2)(k)

σ ;σ ′ −
δσ,σ ′δ2‖k ≤ C1

C2
|λ|γ −k . Finally, the graph (c) is

W
(0;4)

(a),ω;σ,σ ′(x,y,x′,y′)

def= λ

∫
dwduv(x − w)g[k+1,N]

ω (x − u)W
(1;4)

−σ ;σ,σ ′(w;u,y,x′,y′). (77)

Using (44), ‖W(1;4)

−σ ;σ,σ ′ ‖ ≤ C|λ|γ −k and

‖W(0;4)

(a),ω;σ,σ ′ ‖k ≤ |λ| · |v|∞ · |gω|1 · ‖W(1;4)

−σ ;σ,σ ′ ‖k ≤ C1

2
|λ|γ −2k. (78)

From this the third of (50) follows and the theorem is proved. �

4 Schwinger Functions

The multiscale integration of (4), when ϕ 
= 0, is obtained by a slight modification of the
one presented in Sect. 2. In particular V (k)(ψ(≤k), φ, J ) is given by an expression similar to
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Fig. 8 Graphical representation of W(0;4)(k) . The dark bubble represents W
(1;2)(k)

σ ;σ ′ − δσ,σ ′δ2

(13), sum of monomials in ψ(≤k), J and φ. We define L = 0 on the kernels of the monomials
containing at least a φ except when the monomial is ϕ+

x,ω,σ ψ−(≤k+1)
y,ω,σ or ψ+(≤k+1)

y,ω,σ ϕ−
x,ω,σ ; in

such a case the kernel is ĝω(k)Ŵ (0;2)(k)
σ (k) and we define, for 0 ≤ k ≤ N ,

L[ĝω(k)Ŵ (0;2)(k)
σ (k)] def= ĝω(k)Ŵ (0;2)(k)

σ (k) (79)

while, for k < 0, L ≡ 0. Correspondingly, for k > 0 we define

γ −kν̃k,ω,σ (x,y)
def=

∫
dzgω(x − z)W(0;2)(k)

σ (z,y) (80)

and using (59) we obtain ‖ν̃k,ω,σ ‖k ≤ C1|λ|γ −k ; while for k < 0 we set ν̃k,ω,σ (x,y) ≡ 0,
because of the fact that Ŵ 0;2(k)

σ (0) = 0 by symmetries, and then there is an automatic dimen-
sional gain:

ĝω(k)Ŵ (0;2)(k)
σ (k) = ĝω(k)[Ŵ (0;2)(k)

σ (k) − Ŵ (0;2)(k)
σ (0)]. (81)

Let ε̃k be larger than εk and maxω,σ maxh:k≤h≤N ‖ν̃k,ω,σ ‖k . The 2-points Schwinger function
is given by

SN;ω;σ (x,y) =
∑

h≤N

g(h)
ω (x − y) +

∞∑

n=0

∑

j≤N

∑

τ∈T̄ 2,0
j,n

∑

P∈P|Pv0 |=2

Sτ (x,y), (82)

where T̄ nϕ,nJ

h,n is the set of trees with n endpoints, nϕ special endpoints of type ϕ, nJ end-
points of type J and first vertex scale j ; nJ

v , nφ
v are the number of fields of type J,φ asso-

ciated to end-points following v. If h is the first nontrivial vertex u of τ , and h1 and h2 are
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the scale of the two endpoints of type ϕ, we have

|Sτ (x,y)| ≤ C̃q(cε̃h)
n−2γ j−h1−h2

∏

v not e.p.

γ −(
|Pv |

2 −2+zv)

× γ 2h

1 + [γ h|x − y|] q
2
. (83)

Indeed, (83) is the same of (43), for |Pv0 | = 2, nJ
v0

= 0, times some factors more.

1. The presence, with respect to the graphical expansion of the kernels, of two external
propagators, g(h1)

ω and g(h2)
ω , causes the factor γ −h1−h2 .

2. Before performing the bounds as for the kernels, it is possible to extract from the bound
on the propagator (11) a factor bh = (1 + (γ h|x − y|) q

2 )−1: the product of bh for each of
the propagators of the graph that are not involved into the Gram determinant (18) can be
bounded with the factor [1 + [γ h|x − y|] q

2 ]−1 in (83) at the price of a constant Cn.
3. The bounds for the kernels can be straightforwardly modified also for obtaining the fac-

tor γ 2h: it is the effect of the missed integration in the variable x − y, that causes the
replacement of | · |1-norm with the | · |∞-norm of a propagator gω; this occurs in corre-
spondence of v, the vertex with highest scale, h, in which the two special endpoints of
type ϕ are connected.

It is convenient to call |Pv| = nψ
v + nϕ

v . We have that zv is the same of (43), with a further
case in which it is not zero: if hv < 0 and nψ

v = nϕ
v = 1, then zv = 1. This is because the

automatic dimensional gain depicted in (81).
Along the tree τ , we consider three paths: C1 and C2, connecting the endpoint of type ϕ

on scale h1 and the one on scale h2 respectively with v0; and C connecting u with v0. For
j = 1,2, we find γ −hj = γ −j

∏
v∈Cj

γ −1 and γ −j = γ −h
∏

v∈C γ . These identities, replaced
in (83), gives:

|Sτ (x,y)| ≤ C̃q(cε̃h)
n−2 γ h

1 + [γ h|x − y|] q
2

×
(

v 
∈C∏

v not e.p.

γ −(
n
ψ
v
2 + 3n

ϕ
v

2 −2+zv)

)
∏

v∈C
γ − n

ψ
v
2 (84)

and n
ψ
v

2 + 3n
ϕ
v

2 − 2 + zv > 0, as well as n
ψ
v

2 > 0 for v ∈ C: we can perform the summation on
the trees, keeping fixed the scale h.

|SN;ω;σ (x,y) − g(≤N)
ω (x,y)| ≤ C|λ|

∑

h≤N

γ h

1 + [γ h|x − y|] q
2

≤ C|λ| 1

|x − y| . (85)

Finally, we want to study the difference SN;ω;σ (x,y) − Sω;σ (x,y) for x − y 
= 0.

SN;ω;σ (x,y) − Sω;σ (x,y)

=
∑

h≤N

g(h)
ω (x − y) +

∞∑

n=0

+∞∑

j=−∞

∑

τ∈T̄ 2,0
j,n

∑

P∈P|Pv0 |=2

Dτ(x,y). (86)
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In such a tree expansion, Dτ(x,y) is not zero only in two cases: either τ has at least one
vertex v∗ on scale h∗ > N ; or τ has vertices scales ≤ N , but has an endpoint which, in turn,
has tree expansion with at least one vertex v∗ on scale h∗ > N . If τ is of the former type,
fixed ϑ , we have

|Dτ(x,y)| ≤ C̃q(cε̃h)
n−2 γ h

1 + [γ h|x − y|] q
2

× γ −ϑ(h∗−h)

(
v 
∈C∏

v not e.p.

γ −(
n
ψ
v
2 + 3n

ϕ
v

2 −2+zv−ϑ)

)
∏

v∈C
γ − n

ψ
v
2 . (87)

It τ is of the latter type, we still have the above bound, by induction on the subtrees in which
the endpoints can be expanded: indeed, in the analysis of the previous section it is clear that
if the fermion propagator is constrained to be on scale > N , bounds (50) are still true, with
a more factor γ −ϑ(h∗−k), which, together to a factor γ −ϑ(k−h) gives the wanted γ −ϑ(h∗−h).

For ϑ > 0 and but small enough, we still have n
ψ
v

2 + 3n
ϕ
v

2 − 2 + zv − ϑ > 0. This means
that we can perform the summation on the trees, keeping fixed the scale k. As γ −ϑ(h∗−h) ≤
γ −ϑ(N−h),

|SN;ω;σ (x,y) − Sω;σ (x,y)| ≤ Cγ −ϑN

+∞∑

h=−∞

γ (1+ϑ)h

1 + [γ h|x − y|] q
2

≤ C
1

γ ϑN |x − y|1+ϑ
. (88)

5 Ward Identities

Let us consider the 2-point Schwinger function with one density insertion:

ĜN;ω,σ ′;σ (p;k) = ∂3W
∂Ĵp,ω,σ ′∂ψ̂+

k+p,ω,σ ∂ψ̂−
k,ω,σ

(0,0). (89)

In the generating functional (4), we perform the phase-chiral transformation

ψ̂ε
k,ω,σ → ψ̂ε

k,ω,σ + ε

∫
dp

(2π)2
α̂p,ω,σ ψ̂ε

k+εp,ω,σ (90)

and obtain the identities:

Dω(p)ĜN;ω,σ ′;σ (p;k)

= δσ,σ ′ [ŜN;ω,σ (k) − ŜN;ω,σ (k + p)] + Δω,σ ′;σ (p;k) (91)

where Δω;σ ′,σ (p;k) is a correction term caused by the presence of the cutoff:

Δω;σ ′,σ (p;k) =
∫

dq
(2π)2

CN;ω(q + p,q)〈ψ̂+
p+q,ω,σ ′ψ̂

−
p,ω,σ ′ψ̂

−
k+p,ω,σ ψ̂+

k,ω,σ 〉

for

CN;ω(k + p,k)
def= Dω(k + p)[1 − χ−1

N (k + p)] − Dω(k)[1 − χ−1
N (k)].
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The rest Δω;σ ′,σ (p;k) does not vanish in the limit of removed cutoff, but rather it causes the
anomaly of the Ward Identities.

Theorem 3 There exists ε0 > 0 such that, for |λ| ≤ ε0 and in the limit of removed cutoff,

Ĝω,σ ′;σ (p;k) = a(p) + σσ ′ā(p)

2
[Ŝω,σ (k) − Ŝω,σ (k)] (92)

for

a(p) = 1

Dω(p) − λ
2π

v̂(p)D−ω(p)
, āN (p) = 1

Dω(p) + λ
2π

v̂(p)D−ω(p)
.

The proof is a consequence of the two following lemmas.

Lemma 4 For |λ| small enough and p,k,p − k 
= 0, the limit of removed cutoff of
Ĝω,σ ′;σ (p;k) exist and is finite.

Proof We can write

Ĝσ ′;σ (p;k) =
∞∑

n=0

∑

j≤N

∑

τ∈T 2,1
j,n

∑

P∈P|Pv0 |=2

Ĝτ (p;k), (93)

with an obvious definition of Ĝτ (p,k). We define hp = min{j : fj (p) 
= 0} and suppose
that p, k, p − k are all different from 0. It follows that, given τ , if h− and h+ are the
scale indices of the ψ fields belonging to the endpoints associated with ϕ+ and ϕ−, while
hJ denotes the scale of the endpoint of type J , Ĝτ (p;k) can be different from 0 only if
h− = hk, hk + 1, h+ = hk−p, hk−p + 1 and hJ ≥ hp − logγ 2. Moreover, if T p,k

j0,n denotes the

set of trees satisfying the previous conditions and τ ∈ T p,k
j0,n, |Ĝτ (p;k)| can be bounded by∫

dzdx|Gτ(z;x,y)|. We get

|Ĝ(1;2)

σ ′;σ (p;k)| ≤ Cγ −hkγ −hk−p

×
∞∑

n=0

∑

j≤N

∑

τ∈T p,k
j0,n

∑

P∈P|Pv0 |=2

(C|λ|)n
∏

v not e.p

γ −dv , (94)

where dv = |Pv |
2 − 2 + zv + nφ

v .

Given τ ∈ T p,k
j0,n, let v∗

0 the higher vertex preceding all three special endpoints and v∗
1 ≥ v∗

0
the higher vertex preceding either the two endpoints of type ϕ or one endpoint of type ϕ and
the endpoint of type J . We have dv > 0, except for a finite number of vertices belonging to
the path C∗ connecting v∗

1 with v∗
0 , where dv = 0:

(a) the vertices with |Pv| = 4 and nJ
v = 0; since there is a momentum k flowing inside

the corresponding cluster and k − p flowing outside, by conservation of the momenta
the scale label of both of the other ψ fields—and hence also the scale label of such
vertices—cannot be less than logγ (|p|/2);

(b) the vertices with |Pv| = 2 and nJ
v = 1; with a momentum p flowing inside the cluster

and either a momentum k flowing inside or k−p flowing outside, the scale label of such
vertices cannot be less than min{h+, h−} − 1.
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Accordingly, the number of the vertices depicted in the above list is not larger than min{|hk −
hp|, |hk−p − hp|} + 2 − logγ 2. Thus we can replace in (94) the rough bound:

∏

v not e.p

γ −dv ≤ Cγ |hk−hp|γ |hk−p−hp| ∏

v not e.p

γ −dv−rv

with rv = 1 for v : dv = 0 and rv = 0 otherwise. Finally, we can perform the sums over the
scale and Pv labels of τ , obtaining:

|Ĝσ ′;σ ′(p;k)| ≤ Cγ −hkγ −hk−pγ |hk−hp|γ |hk−p−hp|. (95)

This completes the proof. �

Lemma 5 There exist a finite νN such that it is possible to decompose

Δ
(1;2)

ω;σ ′,σ (p;k) − νN v̂(p)D−ω(p)ĜN;ω;−σ ′,σ (p;k)

=
∑

ω̄

Dω̄(p)R̂
(1;2)

N;ω̄,ω;σ ′,σ (p;k) (96)

where R̂
(1;2)

N;ω̄,ω;σ ′,σ is such that, for fixed k and p, it holds

lim
N→∞

R̂
(1;2)

N;ω̄,ω;σ ′,σ (p;k) = 0. (97)

Furthermore, limN→∞ νN = λ
2π

.

Proof It is convenient to write the rest R̂
(1;2)

ω̄,ω,σ ′;σ as

∑

ω′
Dω′(q)R̂

(1;2)

ω̄,ω,σ ′;σ (q;k) = ∂3WΔ

∂α̂q,ω,−σ ′∂ϕ̂+
k−q,ω,σ ∂ϕ̂−

k,ω,σ

(0,0) (98)

where we have introduced the new generating functional WΔ(α,ϕ) defined such that:

eWΔ(α,ϕ) =
∫

P (dψ≤N) e−V(N)
Δ (ψ(≤N),α,ϕ)

def=
∫

P (dψ≤N) exp{−λV (ψ(≤N)) + [T0 − νNT−](ψ(≤N),α)}

× exp

{∑

ω,σ

∫
dz(ψ(≤N)+

z,ω,σ ϕ−
z,ω,σ + ϕ+

z,ω,σψ(≤N)−
z,ω,σ )

}
(99)

with

T0(ψ,α) =
∑

ω,σ

∫
dpdq
(2π)4

χ̄N (p)CN;ω(q + p,q)α̂p,ω,σ ψ̂+
q+p,ω,σ ψ̂−

q,ω,σ ,

T−(ψ,α) =
∑

ω,σ

∫
dp dq
(2π)4

χ̄N (p)v̂(p)D−ω(p)α̂p,ω,σ ψ̂+
q+p,ω,−σ ψ̂−

q,ω,−σ .

(100)
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We remark that the presence of the cutoff function χ̄N (p)
def= ∑N

j=−N f̂j (p) is immaterial
for (98), since p is finite and nonzero. But it is essential for the multiscale integration,
because it simplify the discussion of the tadpoles.

A crucial role in the following analysis is played by the functions

Û (i,j)
ω (q + p,q)

def= χ̄N (p)CN;ω(q + p,q)ĝ(i)
ω (q + p)ĝ(j)

ω (q),

Q̂(N,i)
ω (q + p,q)

def= χ̄N (p)CN;ω(q + p,q)ĝ(N)
ω (q + p)χ̂j (q).

(101)

We remark that Û (i,j)
ω (p,q) = Û (j,i)

ω (q,p); in particular Û (i,j)
ω ≡ 0 if neither j nor i equals N .

As proved in [3] (see also Appendix A) it is possible to decompose

Û (i,j)
ω (q + p,q) =

∑

ω̄

Dω̄(p)Ŝ
(i,j)

ω̄,ω (q + p,q),

Q̂(N,j)
ω (q + p,q) =

∑

ω̄

Dω̄(p)P̂
(N,i)
ω̄,ω (q + p,q)

(102)

for Ŝ
(i,j)

ω̄,ω such that, calling

S
(i,j)

ω̄,ω (z;x,y) =
∫

dpdq
(2π)4

e−ip(x−z)e−iq(y−z)Ŝ
(i,j)

ω̄,ω (p,q) (103)

and similarly for P
(N,j)

ω̄,ω , for any positive integers p,q there exists a constant Cp,q > 1 such
that

|S(N,j)

ω̄,ω (z;x,y)| ≤ Cp,q

γ N

1 + [γ N |x − z|]p
γ j

1 + [γ j |y − z|]q ,

|P (N,j)

ω̄,ω (z;x,y)| ≤ Cp,q

γ N

1 + [γ N |x − z|]p
γ 2j

1 + [γ j |y − z|]q .

(104)

The lemma holds if we choose νN to be

νN

def=
N∑

i,j=−∞

∫
dp

(2π)2
Ŝ

(i,j)
−ω,ω(p,p). (105)

As proved in [5], in the limit of removed cutoff of (105) equals λ
2π

. Therefore we have to
prove that with this choice (97) holds true.

The integration of WΔ(α,ϕ) is done by a multiscale integration similar to the previous
one. After the integration of the fields ψ(N), . . . ,ψ(k+1) we get the effective potential V (k)

Δ

such that

e−V(k)
Δ (ψ(≤k),α,ϕ) =

∫
P (dψ [k+1,N])e−V(N)

Δ (ψ(≤N),α,ϕ). (106)

In particular, in view of (98), we are interested in the part of V (k)
Δ (ψ(≤k), α,ϕ) linear in α,

that we call K(k)
Δ (ψ(≤k), α,ϕ). We first consider the kernels for ϕ = 0.

K(k)
Δ (ψ,α,0)

=
∑

m≥1

∑

ω,σ

∫
dxdydz

K
(1;2m)(k)

Δ;ω,σ,σ (x;y, z)

2m! αx,ω,σ

m∏

i=1

ψ+
y,ω,σi

m∏

i=1

ψ−
z,ω,σi

. (107)
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As consequence of (102), we decompose

K̂
(1;2m)(k)

Δ;ω;σ,σ (p;k)
def=

∑

ω̄

Dω̄(p)Ŵ
(1;2m)(k)

Δ;ω̄,ω;σ,σ (p;k). (108)

We prove the following result.

Lemma 6 For |λ| small enough and p,k,p + k 
= 0, we have that W
(1;2m)(k)

Δ;ω,σ,σ analytic in λ

and, for m ≥ 1,

‖W(1;2m)(k)

Δ;ω,σ,σ ‖k ≤ C|λ|γ − 1
2 (N−k)γ k(1−m) (109)

Proof We integrate as in (33), and the difference with respect to (4) is that the term∫
dxJx,ω,σ ψ+

x,ω,σ ψ−
x,ω,σ is replaced by T0(ψ,α) − νNT−(ψ,α). The integration is done ex-

actly as in Sect. 2; we define for 0 ≤ k ≤ N

LŴ
(1;2)(k)

Δ;εω,ω,σ,σ (p;k) = Ŵ
(1;2)(k)

Δ;εω,ω,σ,σ (p;k)
def= ν̂ε

k,ω,σ (p;k) (110)

so that for k ≥ 0

LV (k)
Δ (ψ(≤k), α,0)

= LV(ψ(≤k),0)

+
∑

ε=±

∫
dkdp
(2π)4

Dεω(p)ν̂ε
k,ω,σ (p;k)α̂p,ω,σ ψ̂

(≤k)+
k,ω,εσ ψ̂

(≤k)−
k+p,ω,εσ . (111)

LV(ψ(≤k),0) is given by the first two addenda of (38). On the other hand for k ≤ 0 we define

LŴ
(1;2)(k)

Δ;εω,ω,σ,σ (p;k) = Ŵ
(1;2m)(k)

Δ;εω,ω,σ,σ (0;0)
def= ν̂ε

k,ω,σ (112)

so that we define ν̂+
k,ω,σ and ν̂−

k,ω,σ such that

LV (k)
Δ = LV(ψ(≤k),0)

+
∑

ε=±
ν̂ε

k,ω,σ

∫
dkdp
(2π)4

Dεω(p)αp,ω,σ ψ
(≤k)+
k,ω,εσ ψ

(≤k)−
k+p,ω,εσ . (113)

Proceeding as in Sect. 2 we can write

Ŵ
(k)
Δ (p;k) =

∞∑

n=0

∑

τ∈T 2,1
k,n

∑

P∈P|Pv0 |=2

Ŵ
(k)
Δ,τ (p;k), (114)

where T 2,1
j,n is a family of trees, defined as in Sect. 2 with the only difference that to the

end-points v is now associated (111) for hv ≥ 0 or (113) for hv < 0.
Assume that

|νε
k | ≤ C|λ|γ − 1

2 (N−k), (115)
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then

‖W(k)
Δ,τ‖k ≤ (cε̄h)

nγ − 1
2 (N−k)γ

h(2− |Pv0 |
2 −nα

v0
)

×
∏

v not e.p.

γ −(
|Pv |

2 −2+zv+nα
v ) (116)

where nα
v is the number of endpoints of type α following the vertex v and, by construction,

nα
v0

= 1. |Pv |
2 − 2 + zv + nα

v > 0; this formula implies immediately (109).
The bound (104) says that, for obtaining the dimensional bound (116), the function S(i,j)

is exactly equivalent to the contraction of the operator Jψ+ψ−, with one ψ field contracted
on scale i, and the other contracted on scale j . This is coherent with thinking to the external
field Dω(p)α̂p,ω,σ as bearing the same dimension of the J field.

To avoid the (n!)2 bounds for the truncated expectation require more care. Indeed, in
the contraction of the operator Jψ+ψ− one propagator belongs to the anchored tree of
formula (17), while the other may belong to the anchored tree, or be inside the Gram deter-
minant. When studying the contraction of the kernel T0 it is convenient to avoid the bound
of the Gram determinant with (24) directly. The determinant can be expanded with respect
to the entries of one the row and the corresponding minors; in particular, we choose the row
(made of l entries) containing the propagator coming out of the operator T0, so that, together
with the other propagator in the anchored tree, we can reconstruct the function S(i,j) times
a monomial in the parameters t that can be always bounded by 1; the corresponding minors
are Gram determinants of dimension l − 1, that can be bounded as in (11). Therefore, the
expansion with respect to a row make us loose a factor l with respect to the usual bound,
namely a Cn factor more in the final bound.

In order to prove (115) we note that

W
(1;2)(k)

Δ;ω̄,ω,σ,σ ′(z;x,y)

=
N∑

i,j=k

∫
dudwS

(i,j)

ω̄,ω (z;u,w)W
(0;4)(k)

ω;σ,σ ′ (u,w,x,y)

− δω̄,−ωνN

∫
dwv(z − w)W

(1;2)(k)

ω;−σ,σ ′(w;x,y). (117)

The reason for which in the second line of (117) there is W
(0;4)(k)

ω;σ,σ ′ (u,w,x,y) and not also
non-connected graphs whit four external legs is the following:

(a) Defining (1 − χN(k))fi(k) = δi,NuN(k), the graphs in which one between the fields ψ̂

in T0 is contracted with a kernel Ŵ (0;2)(k)
σ is of the form:

χN(k + p) − 1

χN(k + p)
Dω(k + p)ĝω(k)Ŵ (0;2)(k)

σ (k) − uN(k)Ŵ (0;2)(k)
σ (k). (118)

This term is not compatible with the structure of the multiscale expansion of the
Schwinger functions, since by support properties we have |k + p|, |k| > γ N while, by
construction, the fields ψ

≤N−1
k+p and ψ

≤N−1
k , implies the constraint |k + p|, |k| < γ N .

(b) The graphs in which all and two the fields ψ̂ in T0 are contracted, each one with its own
Ŵ (0;2)(k)

σ have the form

−[uN(k + p)ĝω(k) − uN(k)ĝω(k + p)]
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× Ŵ (0;2)(k)
ω (k)Ŵ (0;2)(k)

σ (k + p) (119)

hence they are not compatible with the multiscale expansion for the very same reason
as above.

Equation (117) is analyzed in a way similar to the one followed in Sect. 3; by using the
decomposition of W(0;4)(k)

ω,σ in Fig. 8, so obtaining the decomposition for W
(1;2)(k)

Δ;ω̄,ω,σ,σ ′ depicted
in Fig. 9.

Fixed the integer q and calling bj (x)
def= Cqγ

j/(1+[γ j |x|]q), we bound the r.h.s. member
in the same spirit as in Sect. 3.

1. Graphs (c) and (d) are:

N∑

i,j=k

∫
dudu′dwdw′S(i,j)

−ω,ω(z;u,w)gω(u − u′)v(u − w′)

× W
(1;4)(k)

ω;−σ,σ,σ ′(w′;u′,w,x,y)

+
N∑

i,j=k

∫
dudu′dwdw′S(i,j)

−ω,ω(z;u,w)W
(0;2)(k)

ω;σ (w,w′)

× gω(w′ − u)v(u − u′)W(1;2)(k)

ω;−σ,σ ′(u′;x,y). (120)

Fig. 9 Graphical representation of (112)
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Since either i or j has to be N , and by the bound (104), the norm of (c) is bounded by

2|v|∞
N∑

j,m=k

∫
dxdu′dwdw′|W(1;4)(k)

ω;−σ,σ,σ ′(w′;u′,w,x,y)|

×
∫

dzdubN(z − u)bj (z − w)|g(m)
ω (u − u′)| (121)

and hence we can clearly proceed as for (66) but now the scale of higher momenta is
fixed to be N , and therefore we get the bound

C1|λ| · |v|∞ · γ −k

N∑

i=k

i∑

i′=k

γ −Nγ −iγ i′

≤ C2|λ|γ −k−N(N − k) ≤ C3|λ|γ −2kγ −(1/2)(N−k). (122)

A similar bound can be obtained for (d).
2. The graphs (e) and (f) are:

δσ,σ ′
N∑

i,j=k

∫
dudwdw′S(i,j)

−ω,ω(z;u,w)W
(1;2)(k)

ω;σ,σ (w′;w,x)

×
[
δ(u − y) +

∫
du′gω(u − u′)v(y − w′)W(0;2)(k)

ω;σ,σ (u′,y)

]
. (123)

The bound for the graph (e) is C|v|∞ · ‖W(1;2)(k)

ω;σ,σ ‖k · |bN |1 ∑N

j=k |bj |1 ≤ Cγ −(N−k)γ −2k .
Similar bound holds for (f).

3. The graphs (a) and (b) are:

∫
du

[
N∑

i,j=k

S
(i,j)
−ω,ω(z;u,u) − νNδ(z − u)

]

×
∫

dwv(u − w)W
(1;2)(k)

ω;−σ,σ ′(w,x,y). (124)

Using the identity (69), for graph (a) we have

N∑

i,j=k

∫
dudwS

(i,j)
−ω,ω(z;u,u)v(u − w)W

(1;2),(k)

ω;−σ,σ ′ (w;x,y)

=
∫

dwv(z − w)W
(1;2),(k)

ω;−σ,σ ′ (w;x,y)

N∑

i,j=k

∫
duS

(i,j)
−ω,ω(z;u,u)

+
∑

p=0,1

N∑

i,j=k

∫
duS

(i,j)
−ω,ω(z;u,u)(up − zp)

×
∫ 1

0
dτ

∫
dw(∂pv)(z − w + τ(u − z))W(1;2),(k)

ω′;−σ,σ ′(w;x,y). (125)
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The latter term is irrelevant and vanishing in the limit N − k → +∞: using that one
between i and j is on scale N , a bound for its norm is

2‖W(1;2),(k)

ω′;−σ,σ ′ ‖k · |∂v|1 ·
N∑

j=k

∫
dubN(z − u)bj (z − u)|(up − zp)| (126)

and we obtain the bound Cγ −kγ −(N−k). The former term in the r.h.s. member of (125) is
compensated by (b). Indeed we have

N∑

i,j=k

∫
duS

(i,j)
−ω,ω(z;u,u) − νN = 2

∑

j≤k−1

∫
duS

(N,j)
−ω,ω(z;u,u) (127)

and hence the bound for such a difference is Cγ −(N−k).

The graph expansion for W
(1;2)(k)

Δ;ω,ω,σ,σ ′ is again given by Fig. 9, but for νN replaced by 0.
Hence a bound can be obtained with the same above argument, with only one important
difference: the contribution that in the previous analysis were compensated by (b) now are
zero by symmetries. Indeed, calling k∗ the rotation of k of π/2 and since Ŝ

(i,j)

ω̄,ω (k∗,p∗) =
−ωω̄Ŝ

(i,j)

ω̄,ω (k,p), in place of the bound (127), in this case we have:

N∑

i,j=k

∫
duS(i,j)

ω,ω (z;u,u) =
N∑

i,j=k

∫
dk

(2π)2
Ŝ(i,j)

ω,ω (k,−k) = 0. (128)

Finally, so far we have obtained (115) for k ≥ 0.
Let us consider, now, the case k < 0. By (112) we have

LŴ
(1;2)(k)

Δ;ω̄,ω,σ,σ ′(p;k)

= Ŵ
(1;2)(k)

Δ;ω̄,ω,σ,σ ′(0;0)

=
∫

dq
(2π)2

Ŝ
(i,j)

ω̄,ω (q,q)Ŵ
(0;4)(k)

ω;σ,σ ′ (q,q,0) − δω̄,−ωνNŴ
(1;2)(k)

ω;−σ,σ ′(0,0). (129)

As we noticed in Sect. 2 Ŵ
(1;2)(k)

ω;−σ,σ ′(0,0) = δ−σ,σ ′ ; furthermore, under a rotation of π/2p,

Ŝ
(i,j)

ω̄,ω (p∗,q∗) = e
−i(ω+ω̄) π

2p Ŝ
(i,j)

ω̄,ω (p,q),

Ŵ (0;4)(k)
p,ω (p∗,q∗,0) = e

−iωπ(1− 1
p )

Ŵ (0;4)(k)
p,ω (p,q,0)

(130)

hence the integral in (129) is non-zero only for p = 1 and ω̄ = −ω, case in which (129) is
reduces to (127). �

We can finally discuss the bound for R
(1;2)

ω;σ ′,σ (p;k) so finally proving Lemma 6. It can

be written by a sum of trees essentially identical to the ones for Ĝ
(1;2)

ω;σ ′,σ (p;k), with the
only important difference that there are three different special endpoints associated to the
field α, corresponding to the three different terms in (100); we call these endpoints of type
T+, T−, T0 respectively.

The sum over the trees such that the endpoint is of type ν±
k,ω,σ can be bounded as in (94),

the only difference being that, thanks to the bound (115), one has to multiply the r.h.s. by a
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factor |λ|γ − 1
2 (N−k), for k the scale of the endpoint. This factor has to be inserted also in the

r.h.s. of the bounds (95), hence, it is easy to see that the contributions of these trees vanishes
as N → ∞.

Let us now consider the trees with an endpoint of type T0. The fields of the T0 endpoint
are contracted at scale j,N ; this implies that hJ = N : since dv + rv −1/4 > 0 for all vertices
belonging to the path connecting the endpoint to the root, we can replace in the r.h.s. of the
bounds (95) dv + rv with dv + rv − 1/4 and add a factor γ −(N−hk)/4, so that

lim
N→∞

R
(1;2)

ω;σ ′,σ (p;k) = 0. (131)

6 The Closed Equation

By (54), for k = −∞, we obtain the Schwinger-Dyson equation for the two-point Schwinger
function

ŜN;ω,σ (k) = ĝω(k)

[
1 − λ

∫
dp

(2π)2
v̂(p)ĜN;ω,−σ ;σ (p;k)

]
. (132)

We define

aN(p) = 1

Dω(p) − νN v̂(p)D−ω(p)
, āN (p) = 1

Dω(p) + νN v̂(p)D−ω(p)

and summing over σ ′ the equation, we obtain the vector Ward Identity (associated the phase
symmetry):

∑

σ ′
ĜN;ω,σ ′;σ (p;k) = aN(p)

∑

ε,ω̄

Dω̄(p)R̂
(1;2)

ω̄,ω;εσ,σ (p;k)

+ aN(p)[ŜN;ω,σ (k) − ŜN;ω,σ (k + p)] (133)

while multiplied times σ ′ the equation, and summing over σ ′, we obtain the axial Ward
Identity (associated to the chiral symmetry):

∑

σ ′
σ ′ĜN;ω,σ ′;σ (p;k) = σ āN(p)

∑

ε,ω̄

εDω̄(p)R̂
(1;2)

ω̄,ω;εσ,σ (p;k)

+ σ āN(p)[ŜN;ω,σ (k) − ŜN;ω,σ (k + p)]. (134)

Finally, from these two equations, since 1+ρσ ′
2 = δρ,σ ′

ĜN;ω,σ ′;σ (p;k) =
∑

ε,ω̄

aN(p) + āN (p)ε

2
Dω̄(p)R̂

(1;2)

ω̄,ω;εσ ′,σ (p;k)

+ aN(p) + σσ ′āN (p)

2
[ŜN;ω,σ (k) − ŜN;ω,σ (k + p)]. (135)

In order to shorten the notation we now define

Âε(p)
def= v̂(p)[a(p) + εā(p)]

2
. (136)
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Let

R̂
(2)

ω;ε;σ (k)
def=

∑

ω̄

∫
dp

(2π)2
χ̄N (p)Â−(p)Dω̄(p)R̂

(1;2)

ω̄,ω;−εσ ;σ (p;k)

Theorem 4 If |λ| is small enough and for fixed momentum k, in the limit N → ∞ we obtain

Dω(k)Ŝω,σ (k) = 1 + λ

∫
dp

(2π)2
Â−(p)Ŝω,σ (k + p). (137)

By solving (137) (see Appendix B) and using (88), Theorem 1 follows. In order to prove
of Theorem 4 we have to show that

lim
N→∞

R̂
(2)

ω;ε;σ (k) = 0 (138)

it is convenient to write

R̂
(0;2)

ω;ε;σ (k) = ∂2WT ,ε

∂β̂k,ω,σ ∂ϕ̂−
k,ω,σ

(0) (139)

where we have introduced the new generating functional

eWT ,ε(β,ϕ) =
∫

P (dψ(≤N))e
−V(N)

T ,ε
(ψ≤N ,β,ϕ)

def=
∫

P (dψ) exp{−λV (ψ(≤N)) + [T (ε)

1 − νNT
(ε)
− ](ψ(≤N), β)}

× exp

{∑

ω,σ

∫
dx[ϕ+

x,ω,σ ψ(≤N)−
x,ω,σ + ψ(≤N)+

x,ω,σ ϕ−
x,ω,σ ]

}
(140)

with

T
(ε)

1 (ψ,β) =
∑

ω,σ

∫
dpdq
(2π)4

χ̄N (p)Âε(p)CN;ω(q + p,q)

× β̂k,ω,σ ψ̂−
k+p,ω,σ ψ̂+

q+p,ω,−εσ ψ̂−
q,ω,−εσ ,

T
(ε)
− (ψ,β) =

∑

ω,σ

∫
dpdq
(2π)4

χ̄N (p)Âε(p)v̂(p)D−ω(p)

× β̂k,ω,σ ψ̂−
k+p,ω,σ ψ̂+

q+p,ω,εσ ψ̂−
q,ω,εσ

(141)

and νN is defined in the previous section.
The integration of WT ,ε can be done in a way very similar to the previous ones. After the

integration of the fields ψ(N), . . . ,ψ(k+1), we get

e
−V(k)

T ,ε
(ψ(≤k),β,ϕ) def=

∫
P (dψ [k+1,N])e−V(N)

T ,ε
(ψ(≤N),β,ϕ) (142)

and we call H(k)
T ,ε the part of V (k)

T ,ε that is linear in β

H(k)
T ,ε(ψ,0, β)

=
∑

m≥1

∑

ω,σ

∫
dzdxdy

H
(1;2m+1)(k)

T ,ε;ω,σ (z;x,y)

2m! βz,ω,σ ′
m∏

i=1

ψ+
xi ,ω,σi

m+1∏

i=1

ψ−
yi ,ω,σi

. (143)
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Theorem 5 If |λ| small enough, for any h : k + 1 ≤ h ≤ N ,

‖H(1;2m+1)(k)

T ,ε;σ,ω ‖k ≤ Cγ − 1
2 (N−k)γ k(1−m) (144)

Proof The integration is done exactly as in Sect. 2; we define for 0 ≤ k ≤ N

LĤ
(1;1)(k)

T ,ε;σ,ω(p;k) = Ĥ
(1;1)(k)

T ,ε;σ,ω(p;k)
def= ẑε

k(p;k),

LĤ
(1;3)(k)

T ,ε;σ,ω(p;k) = Ĥ
(1;3)(k)

T ,ε;σ,ω(p;k)
def= λ̂ε

k(p;k)

(145)

so that for k ≥ 0

LV (k)
T ,ε = LV(ψ(≤k),0)

+
∫

dkdpdq
(2π)4

λ̂ε
k(k,p,q)β̂p,ω,σ ψ̂

(≤k)−
k+p,ω,σ ψ̂

(≤k)+
k,ω,−σ ψ̂

(≤k)−
k+p,ω,−σ

+
∫

dk
(2π)2

ẑε
k(k)β̂k,ω,σ ψ̂

(≤k)−
k,ω,σ (146)

where LV(ψ(≤k),0) is given by the first two addenda of (38).
On the other hand for k ≤ 0 we define

LĤ
(1;1)(k)

T ,ε;σ,ω(p;k) = Ĥ
(1;1)(k)

T ,ε;σ ,ω(0;0) ≡ z̃ε
k,

LĤ
(1;3)(k)

T ,ε;σ,ω(p;k) = Ĥ
(1;3)(k)

T ,ε;σ ,ω(0;0) = λ̃ε
k

(147)

so that for h < 0

LV (k)
T ,ε = LV(ψ(≤k),0)

+ λ̂ε
k

∫
dkdpdq
(2π)4

β̂p,ω,σ ψ̂
(≤k)−
k+p,ω,σ ψ̂

(≤k)+
k,ω,−σ ψ̂

(≤k)−
k+p,ω,−σ

+ ẑε
k

∫
dk

(2π)2
β̂k,ω,σ ψ̂

(≤k)−
k,ω,σ (148)

where LV(ψ(≤k),0) is given by the first two addenda of (39). Proceeding as in Sect. 2 we
can write

H
(1;2m+1)(k)

T ,ε;σ,ω =
∞∑

n=0

∑

τ∈Tk,n

∑

P

H
(1;2m+1)(k)

T ,ε;τ,P (149)

where Tk,n is a family of trees, defined as in Sect. 2 with the only difference that to the
end-points v is now associated (146) for hv ≥ 0 or (148) for hv < 0; and there is one special
endpoint with field β .

Assume that, for any k,

‖λε
k‖k,‖zε

k‖k ≤ C|λ|γ − 1
2 (N−k), (150)

then, proceeding as above

‖H(k)

T ,ε;τ,P‖k ≤ (cε̄k+1)
n−nα

v0 γ − 1
2 (N−k)γ

h(2− |Pv0 |
2 −nα

v0
)
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×
∏

v not e.p.

γ −(
|Pv |

2 −2+zv+nα
v ) (151)

and again |Pv |
2 − 2 + zv + nα

v > 0. In order to prove (150) we can write

H
(1;3)(k)

T ,ε;ω,ω′,σ = H
a(1;3)(k)

T ,ε;ω,ω′,σ + H
b(1;3)(k)

T ,ε;ω,ω′,σ (152)

where:

1. H
a(1;3)(k)

T ,ε;ω,σ contains the term in which the field ψ̂k+p,ω,σ of T1 and T− is not contracted or

is contracted with a Ŵ (0;2)(k):

Ĥ
a(1;3)(k)

T ,ε;ω,σ (k,p)

= [1 + ĝ[k+1,N]
ω (p)Ŵ (0;2)(k)(p)]Âε(p)Dω(p)Ŵ

(1;2)(k)

Δ,ε;ω,ω′,σ (k;p) (153)

for k ≥ 0 we have already proved the bound ‖W(0;2)(k)‖k ≤ C|λ|2γ −k ; for k < 0, we use
the fact that the local part of (up to first order of Taylor expansion in k) Ŵ (0;2)(k) is zero,
and the rest has a dimensional gain of one degree; by (109),

‖Ha(1;3)(k)

T ,ε;ω,σ ‖k ≤ C|λ|γ − 1
2 (N−k). (154)

For k ≤ 0 we have defined LĤ
a(1;3)(k)

T ,ε;ω,σ (k,p) = Ĥ
a(1;3)(k)

T ,ε;ω,σ (0,0) and we know by symmetry

that Ĥ
a(1;3)(k)

T ,ε;ω,σ (0,0) = 0.

2. H
b(1;3)(k)

T ,ε;ω,σ contains the term in which the field ψ̂k+p,ω,σ of T1 and T− is contracted. We
can further distinguish them as in Fig. 10; we can write

H
b(1;3)(k)

T ,ε;ω,σ (x,y,u,v)

=
∫

dzdwv̄(x − z)g[k+1,N]
ω (x − w)K

(1;4)(k)

Δ,ε;ω,ω′,σ (z;w,y,u,v) (155)

where

v̄(x) =
∫

dp eipxÂε(p)Dω(p)

Fig. 10 Graphical representation of H
b(1;3)(k)
T ,ε;ω,σ
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so that, by the bounds for ‖K(1;4)(k)

Δ,ε;ω,ω′,σ ‖k , |v̄|∞ and |g(j)
ω |1,

‖Hb(1;3)(k)

T ,ε;ω,σ ‖k ≤ C|λ|γ −kγ
1
2 (N−k). (156)

While for k < 0 we have that the local part of the graph is zero by transformation under
rotation.

We consider now the terms contributing to H
(1;1)(k)

T ,ε;ω,σ .

1. The contraction of the field ψ̂+
q+p,ω,−εσ with ψ̂−

q,ω,−εσ of T1, possibly through a kernel

Ŵ (0;2)(k)(q), can only happen for p = 0, and therefore it is forbidden by χ̄N (p).
2. The contraction of ψ̂+

q+p,ω,−εσ with ψ̂−
k+p,ω,σ (that can take place only for ε = −), possibly

through a kernel Ŵ (0;2)(k)(q + p), and possibly with ψ̂−
q,ω,−εσ contracted with a second

kernel Ŵ (0;2)(k)(q), has the following expression

Ĥ
a(1;1)(k)

T ,ε;ω,σ (k) =
∫

dp
(2π)2

χ̄N (p + k)Â−(p + k)v̂(k + p)uN(p)

× [1 + ĝ[k+1,N]
ω (p)Ŵ (0;2)(k)(p)][1 + ĝ[k+1,N]

ω (k)Ŵ (0;2)(k)(k)]. (157)

For 0 ≤ k ≤ N , we define LH
a(1;1)(k)

T ,ε;ω,σ (k) = H
a(1;1)(k)

T ,ε;ω,σ (k) for such terms; since |k| is fixed
by hypothesis, |p + k| ≤ Cγ N a bound for (157) is

|v|∞γ −kγ −(N−k)

[
1 + C

N∑

j=k

γ −(j−k)

]
[1 + Cγ −(N−k)]

≤ Cγ −kγ −(N−k). (158)

On the other hand, for k < 0, LĤ
a(1;1)(k)

T ,ε;ω,σ (k) = Ĥ
a(1;1)(k)

T ,ε;ω,σ (0) and

Ĥ
a(1;1)(k)

T ,ε;ω,σ (0) =
∑

ω′
Dω′(k)

∫
dp

(2π)2
χ̄N (p)Â−(p)v̂(p)(∂ω′uN)(p)

× [1 + ĝ[k+1,N]
ω (p)Ŵ (0;2)(k)(p)][1 + ĝ[k+1,N]

ω (k)Ŵ (0;2)(k)(k)]. (159)

Such an integral is zero. Indeed, we have

Â−(p) = νN v̂2(p)D−ω(p)

D2
ω(p) − ν2

N v̂2(p)D2−ω(p)

= νN v̂2(p)D−ω(p)

D2
ω(p)

∑

p≥0

(
νN v̂(p)D−ω(p)

Dω(p)

)2p
def=

∑

p≥0

Âp,−(p). (160)

Under a rotation of an angle ϑ , we have:

Âp,−(p∗) = e−iωϑ(4p+3)Âp,−(p),

Ŵ
(0;2)(k)

p′,ω,σ
(p∗) = e−iωϑ(2p′−1)Ŵ

(0;2)(k)

p′,ω,σ
(p)

(161)

and therefore, since (4p + 4 + 2p′) > 0, taking ϑ : ϑ(4p + 4 + 2p′) < 2π , the integral
(159), with Â−(p) and Ŵ (0;2)(k)

ω,σ (p) replaced by Âp,−(p) and Ŵ
(0;2)(k)

p′,ω,σ
(p) respectively, is

zero.
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Fig. 11 Graphical representation of H
b(1;1)(k)

T ,ε;ω,ω′,σ

3. The contraction of T1 with all and three fields contracted with the same kernel Ŵ (0;4)(k)
ω,σ ;

and the contraction of T−. They are:

Ĥ
b(1;1)(k)

T ,ε;ω,σ (k)

=
∑

ω̄

N∑

i,j=k

∫
dp dq
(2π)4

χ̄N (p)Âε(p)Dω̄(p)Ŝ
(i,j)

ω̄,ω (q + p,q)

× ĝω(p + k)Ŵ (0;4)(k)
σ (k + p,q + p,q)

+
∫

dp
(2π)2

χ̄N (p)Âε(p)v̂(p)D−ω(p)

× ĝω(p + k)Ŵ (1;2)(k)
σ (k + p,p). (162)

It has a bound as (115) times a further factor

|v|∞ ·
N∑

j=k

|gj
ω|1 ≤ Cγ −k. (163)

For k < 0, we have H
b(1;1)(k)

T ,ε;ω,σ (0) = 0. This follows using (160), (161) and

Â+(p) = v̂(p)Dω(p)

D2
ω(p) − ν2

N v̂2(p)D2−ω(p)

def=
∑

p≥0

Âp,+(p), (164)

Âp,+(p∗) = e−iωϑ(4p+1)Âp,+(p),

Ŵ
(0;4)(k)

p′,σ (p∗) = e−iωϑ(2p′−2)Ŵ
(0;4)(k)

p′,σ (p),

Dω̄(p∗)Ŝ(i,j)

ω̄,ω (q∗ + p∗,q∗) = e−iωϑDω̄(p)Ŝ
(i,j)

ω̄,ω (q + p,q).

(165)

This completes the proof. �

Appendix A: Bounds for the Δ Function

Because of the symmetry Ŝ
(i,j)

ω,ω′(p,q) = Ŝ
(j,i)

ω,ω′(q,p), we will only concern the case i ≥ j .

A bound for Ŝ
(i,j)

ω,ω′ can be obtained by explicit computation, using that

fi(k)(1 − χ−1
N (k)) = −δi,N (1 − fN(k))

def= −δi,NuN(k).
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1. For i = j = N ,

Û (N,N)
ω (q + p,q)

=
[
uN(q)

fN(q + p)

Dω(q + p)
− uN(q + p)

fN(q)

Dω(q)

]
χ̄N (p)

= uN(q)fN(q + p)

Dω(q)Dω(q + p)
χ̄N (p)Dω(p) + fN(q)

Dω(q)
[uN(q) − uN(q + p)]χ̄N (p)

+ uN(q)

Dω(q)
[fN(q + p) − fN(q)]χ̄N (p). (166)

Therefore we obtain:

Ŝ
(N,N)

ω,ω′ (q + p,q)
def= −δω,ω′ χ̄N (p)

uN(q)fN(q + p)

Dω(q)Dω(q + p)

+ χ̄N (p)
fN(q)

Dω(q)

∫ 1

0
dτ(∂ω′uN)(q + τp)

+ χ̄N (p)
uN(q)

Dω(q)

∫ 1

0
dτ(∂ω′fN)(q + τp). (167)

2. For j < N , using also that uN(q)fj (q) ≡ 0 (the support of the two function is disjoint)
we have

Û (N,j)
ω (q + p,q) = −χ̄N (p)uN(q + p)

fj (q)

Dω(q)

= −χ̄N (p)[uN(q + p) − uN(q)] fj (q)

Dω(q)
. (168)

Hence:

Ŝ
(N,j)

ω,ω′ (q + p,q) = χ̄N (p)
fj (q)

Dω(q)

∫ 1

0
dτ (∂ω′uN)(q + τp). (169)

3. For i, j < N , we have Û (i,j)
ω ≡ 0.

By inspection, since |∂ωfj | ≤ Cγ −j as well as |∂ωuN | ≤ Cγ −N , we obtain that
∂m

p ∂n
q Ŝ

(N,j)

ω,ω′ (p,q) is not identically zero if one between i = N ; q : fj (q) 
= 0 and p : |p| ≤
2γ N ; in this case we obtain

|∂m
p ∂n

q Ŝ
(N,j)

ω,ω′ (p,q)| ≤ Cm,nγ
−N(1+m)−j (1+n). (170)

The above bounds allow to obtain
∫

dpdq
(2π)4

|∂m
p ∂n

q Ŝ
(N,j)

ω,ω′ (p,q)| ≤ C ′
m,nγ

N(1−m)+j (1−n) (171)

from which the former of (104) follows. The analysis for P
(N,j)

ω̄,ω is similar:

Q̂(N,j)
ω (q + p,q) = χ̄N (p)uN(p + q)χ̂j (q)

= χ̄N (p)[uN(p + q) − uN(q)]χ̂j (q) (172)

from which the latter of (104) follows.
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Appendix B: Solution of the Closed Equation

By inserting (135) into (132), in the limit N → ∞ we obtain

∂ωSω,σ (x) = δ(x) + λA−(x)Sω,σ (x) (173)

whose solution is

Sω,σ (x) = exp

{
λ

∫
dz [gω(x − z) − gω(z)]A−(z)

}
gω(x). (174)

By (136), we first consider

∫
dp

(2π)2
e−ix·pĝω(p)v̂(p)a(p)

=
∫

dp
(2π)2

F(p)
e−ix·p

(p0 + iωs(p)p1)(p0 + iωp1)
(175)

where

s(p) = 1 + νv̂(p)

1 − νv̂(p)
, F (p) = v̂(p)

νv̂(p) − 1
.

Indeed (175) is well defined for x = 0: we can rewrite it separating the two domains |p| ≤ 1
and |p| > 1. The integral on the latter is absolutely convergent, since the decay of F(p) is
faster than any power. The integral of the former can be written as

F(0)

∫

|p|≤1

dp
(2π)2

1

(p0 + iωsp1)(p0 + iωp1)
+ R (176)

where R is again an absolutely convergent integral; the first integral can be written as

∫

|p|≤1

dp
(2π)2

1

(p0 + iωsp1)(p0 + iωp1)

= −
∫

|p|≤1

dp
(2π)2

1

(iωp1 + sp0)(iωp1 + p0)

= −
∫

p2
0+s2p2

1≤1

dp
(2π)2

1

(p0 + iωp1)(p0 + iωsp1)
(177)

hence, the above integral also equals

∫
dp

(2π)2

χ(p2
0 + p2

1 ≤ 1) − χ(p2
0 + s2p2

1 ≤ 1)

(p0 + iωsp1)(p0 + iωp1)
(178)

which is absolutely convergent since the support of χ(p2
0 + p2

1 ≤ 1) − χ(p2
0 + s2p2

1 ≤ s2)

does not contain a neighborhood of the origin.
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Now we discuss (175) for x 
= 0. It can be written as H0 + H1 + H2, for

H0 = F(0)

∫
dp

(2π)2

e−ix·p

(p0 + iωsp1)(p0 + iωp1)
,

H1 =
∫

dp
(2π)2

[F(p) − F(0)]e−ix·p

(p0 + iωsp1)(p0 + iωp1)
,

H2 =
∫

dp
(2π)2

F(p)
e−ix·p

(p0 + iωp1)

[
1

(p0 + iωp1)
− 1

(p0 + iωs(p)p1)

]
.

(179)

By straightforward computation, H0 is given by

1

2π(1 − ν)(s − 1)

∫ +∞

0

dq1

q1
[e−[|x0|c+ix1ωsgn(x0)]q1 − e−[|x0|+ix1ωsgn(x0)]q1 ]

= 1

4πν
ln

x0 + iωx1

x0s + iωx1
, (180)

while both H1 and H2 are vanishing as x → ∞. Indeed H1 can be written as

∫

|p|≤N

dp
(2π)2

[F(p) − F(0)] e−ix·p

(p0 + iωsp1)(p0 + iωp1)

+
∫

|p|≥N

dp
(2π)2

F(p)
e−ix·p

(p0 + iωsp1)(p0 + iωp1)

+ F(0)

∫

|p|≥N

dp
(2π)2

e−ix·p

(p0 + iωsp1)(p0 + iωp1)
. (181)

The second and third term are convergent integral, and each of them can be chosen small
than ε

3 for N large enough; the first integral is vanishing as x → ∞. A similar argument
holds for H3.
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